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1|Introduction    

In the quest to solve challenges of life involving imprecision and vagueness and also to handle decisions with 

exactness, Zadeh [1] proposed a fuzzy set with Membership Degree (MD) defined between a single value 

zero and one; this theory was able to handle some of the problems in different fields. To solve more complex 
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Abstract 

Many complex real-life decision-making problems have been discussed using intuitionistic fuzzy distance measures. 

Sundry intuitionistic fuzzy distance measuring techniques have been developed. Ejegwa et al. developed some 

intuitionistic fuzzy distance measures, including the three intuitionistic fuzzy parameters: membership grade, Non-

Membership (NM) grade, and hesitation grade. Albeit, Ejegwa et al.'s techniques did not consider the weights of the 

elements of the underlying sets upon which the intuitionistic fuzzy sets are defined. This omission could certainly 

affect the distance outputs. As a sequel to this setback, we develop a weighted intuitionistic fuzzy distance measure, 

where the weights are computed from the intuitionistic fuzzy values to enhance reliable results. In addition, the new 

weighted intuitionistic fuzzy distance measure is applied to discuss a pattern recognition problem to ascertain the 

patterns associated more closely with an unknown pattern. In addition, the new weighted intuitionistic fuzzy distance 

measure is applied to medical diagnosis to ascertain a patient's medical problem given certain symptoms. Finally, the 

superiority of the newly developed weighted intuitionistic fuzzy distance measure is shown comparatively concerning 

the existing intuitionistic fuzzy distance measures.  

Keywords: Pattern recognition, Distance functions, Intuitionistic fuzzy sets, Weighted distance measure, Disease 
diagnosis. 
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real-life problems, the fuzzy set has a setback because it uses only the MD and discards the Non-Membership 

(NM) and the Hesitation Degree (HD) that might exist. Atanassov [2] proposed Intuitionistic Fuzzy Sets 

(IFSs) as a broad view of fuzzy sets to solve this. IFSs handle uncertainty by using both membership and NM 

with the hesitation margin. Due to the importance of IFSs in decision-making, distance, and similarity 

measures have been developed by experts on IFSs to solve problems. In [3], the concept of Intuitionistic 

Fuzzy Distance Measure (IFDM) was proposed, and some approaches were developed, which were modified 

by Szmidt and Kacprizyk [4], where it was stated that the three parameters describing IFSs should be taken 

into account while computing distance and similarity.  

Chen [5] developed an IFDM based on a bi-parametric approach to estimate distances between IFSs. The 

approach was not accurate due to the omission of the hesitation margin. Chen [5] introduced the operation 

of union and intersection and applied the concept to evaluate students' answer scripts. Yang [6] proposed a 

new IFDM by incorporating the HD of the IFSs, and it was claimed that the HD affects the distance of IFSs. 

Ejegwa et al. [7] altered the IFDMs in [4] for effective results and applied them in decision-making. Zhou et 

al. [8] introduced a general similarity approach for IFSs and their application based on the Multiple-

Criteria Decision-Making (MCDM) technique and recognition principle. This study seeks to modify Ejegwa 

et al.'s approaches in [7] by incorporating the weights of the elements of the underlying set with application 

to medical diagnosis and pattern recognition. 

1.1|Motivation 

Different experts have developed different distance measures between IFSs. The distance measure in Ejegwa 

et al. [7] incorporated the three parameters of IFSs and the ground set's cardinality. However, the weights of 

the elements of the ground set are not considered. Due to this gap, we seek to modify the work of Ejegwa et 

al. [7] by incorporating the weights to enhance precision. The article aims to present a Weighted Intuitionistic 

Fuzzy Distance Metric (WIFDM) and discuss its applications to pattern recognition and medical diagnosis 

problems. To achieve this, some specific objectives are considered as follows: 

I. Modify the distance measures between IFSs in [7] by incorporating the weights of the intuitionistic fuzzy 

elements. 

II. Apply the WIFDM to discuss the problems of pattern recognition as well as medical diagnosis. 

III. Compare the effectiveness of the WIFDM with other similar IFDMs. 

Distance measures are important decision-making tools that measure the degree of closeness between two 

IFSs. Hence, it is important to consider the weighted values of intuitionistic fuzzy indexes (MD, NMD, and 

HD) to enhance reliable outputs and decisions. The study covers fuzzy sets and IFSs and introduces a new 

method of computing the distances of IFSs and their uses in pattern categorization and disease diagnosis. 

1.2|Literature Review 

The problems of pattern categorization and disease diagnosis are complex decision-making cases encumbered 

with hesitations. To overcome such problems, Zadeh [1] proposed a fuzzy set with a MD defined within a 

closed unit interval. This theory was able to handle some decision-making problems in different fields. Later 

on, it was discovered that for an element, the Non-Membership Degree (NMD) may perhaps not essentially 

complement the MD because of the possibility of hesitations that might exist. By considering MD, NMD, 

and the margin of hesitancy, IFSs were introduced by Atanassov [2] to rectify the fault of fuzzy sets and to 

be more fortified in dealing with vagueness. A fuzzy set is a special IFS where the hesitancy index is zero. 

With IFSs, complex situations with uncertainty are addressed in varied fields. Xu and Yager [9] studied 

particular geometric aggregation operators on IFSs. Xu and Yager [10] deliberated on some preference 

relations on IFSs to evaluate group agreement. Ejegwa et al. [11] studied IFSs and applied the concept to 

career determination. In [12]–[14], some geometric aggregation operators via Einstein norm operations, a 

generalized score function for ranking the different and enhanced operational laws for aggregating the 

dissimilar preferences of the decision-makers, were discussed under IFSs.  
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  Das et al. [15] studied MCDM under an intuitionistic fuzzy setting. Liu and Chen [16] examined group 

decision-making using Heronian aggregation operators on IFSs. Garg [17] presented an approach to the 

correlation coefficient in an intuitionistic multiplicative environment and discussed its use in decision-making. 

Ejegwa et al. [11] worked on applying IFSs in research questionnaires. Nguyen [18] introduced 

similarity/dissimilarly measure for IFSs and used it in pattern recognition, Seikh and Manda [19] studied 

intuitionistic fuzzy dombi aggregation operators and their use in MCDM, Thao [20] proposed a new technique 

of correlation coefficient under IFSs and its application, [17]  presented an approach of correlation coefficient 

under IFSs using connection number of set pair analysis with real-life application,  and other applications of 

IFSs via correlation measures are studied in [17], [21]–[26]. Boran [27] discussed the selection process for the 

location of a facility employing the IFS approach. Davvaz and Sadrabadi [28] worked on applying IFSs in 

medicine. Wang et al. [29] discussed a three-way decision approach with probabilistic dominance relation 

using IFSs.  

Moreover, distance operators have aided in various appreciations of IFSs. Distance measure is a tool to 

estimate the resemblance or dissimilarity between two IFSs. Hong and Kim [30] discussed certain similarity 

measures between vague sets and their elements. Burillo and Bustince [3] initiated the concept of distance 

metric under IFSs, which was later modified by Szmidt and Kacprizyk [4]. In [4], the importance of 

incorporating the three intuitionistic fuzzy parameters while computing distance/similarity was copiously 

discussed. Mitchell [31] worked on a special similarity measure and deliberated on its application in pattern 

recognition, Zhizhen and Pengfei [32] presented some similarity measures between IFSs, and Hung and Yang 

[33] introduced a Hausdorff distance-based similarity measure under IFSs. Grzegorzewski [34] presented 

generalized Hamming and Euclidean distances with IFSs, and Wang and Xin [35] introduced some IFDMs 

and discussed their application to pattern recognition. 

Ye [36] developed a cosine similarity measure and its weighted form. Yang and Chiclana [6] presented a 

Hausdorff-based 3D distance metric under IFSs and tested its compatibility with the 2D equivalent. Hung 

and Yang [37] discussed some Lp metric-based similarity measures for IFSs. In [38], a similarity measure of 

IFSs was developed using geometric transformation with pattern recognition application. Ngan et al. [39] 

studied an IFDM based on H-max and applied the concept in decision-making; Luo and Zhao [40] introduced 

a matrix norm-based IFDM and discussed its uses in pattern categorization and medical diagnosis cases. Xiao 

[41] developed an IFDM and used it in pattern recognition. Rani and Kumar [42] developed two IFDMs, 

with the first measure considering only two of the intuitionistic fuzzy parameters (MD and NMD), the second 

distance measure considered all three intuitionistic fuzzy parameters, and both IFDMs satisfied the axiomatic 

criteria of distance function.  

While these IFDMs have been extensively used in solving problems in various fields, we observe that: 

I. A few of the IFDMs include the hesitation margin of the IFSs in their computation. 

II. The handful of the IFDMs include the weighted intuitionistic fuzzy values in their computation, but the ones 

that did were based on assumption. 

Motivated by these drawbacks, developing a new weighted IFDM that absolves the existing setbacks in the 

extant distance measures is essential. Specifically, the new distance function for IFSs was modified [7] by 

incorporating well-structured and un-assumed weighted intuitionistic fuzzy values to enhance reliable distance 

outputs. 

2|Mathematical Preliminaries 

Here, we review some of the basics of IFSs and distance measures between IFSs. Throughout this work, let 

𝑀 = {𝑚1, 𝑚2, … , 𝑚𝑞 } be a nonempty set, where 𝑞  is the number of elements in  𝑀 and 𝐼𝐹𝑆(𝑀) be the 

collection of all IFSs in 𝑀. 

Definition 1 ([1]). A fuzzy set  𝒪 in 𝑀 is a structure represented by  𝒪 = {〈𝑚𝑖 , 𝛼𝒪(𝑚𝑖)〉: 𝑚𝑖 ∈ 𝑀}, where  𝛼𝒪 

: M→ [0, 1] is the MD of 𝒪. 
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Definition 2 ([2]). An IFS ℛ in 𝑀 is a structure represented by ℛ = {〈𝑚𝑖 , 𝛼ℛ(𝑚𝑖) 𝛽ℛ(𝑚𝑖)〉: 𝑚𝑖 ∈  𝑀}, where 

𝛼ℛ : M→ [0, 1] and 𝛽ℛ : M→ [0, 1] such that 0 ≤ 𝛼ℛ(𝑚𝑖) + 𝛽ℛ(𝑚𝑖) ≤ 1 for all 𝑚𝑖  ∈  𝑀, where 𝛼ℛ(𝑚𝑖) is the 

MD and 𝛽ℛ(𝑚𝑖) is the NM of 𝑀 to ℛ. The HD signified by 𝐻ℛ(𝑚𝑖) defined by 𝐻ℛ(𝑚𝑖) = 1 − 𝛼ℛ(𝑚𝑖) −

𝛽ℛ(𝑚𝑖) is the degree of non-determinacy of 𝑚𝑖 ∈ M to the set ℛ and 𝐻ℛ(𝑚𝑖)  ∈  [0, 1]. 

Definition 3 ([2]). If  ℛ and 𝑆 are two IFSs in 𝑀, then some set operations are as follows; 

I. Complement; ℛ𝐶 = {〈𝑚𝑖, 𝛽ℛ(𝑚𝑖) , 𝛼ℛ(𝑚𝑖)〉: 𝑚𝑖  ∈ 𝑀}. Similarly, we have 

II. 𝑆𝐶 = {〈𝑚𝑖 , 𝛽𝑆(𝑚𝑖) , 𝛼𝑆(𝑚𝑖)〉: 𝑚𝑖  ∈ 𝑀}. 

III. Union; ℛ ∪ 𝑆 = {〈𝑚𝑖, max{𝛼ℛ(𝑚𝑖) , 𝛼𝑆(𝑚𝑖)}, 𝑚𝑖𝑛{𝛽ℛ(𝑚𝑖) , 𝛽𝑆(𝑚𝑖)}〉: 𝑚𝑖  ∈ 𝑀}. 

IV. Intersection; ℛ ∩ 𝑆 = {〈𝑚𝑖 , min{𝛼ℛ(𝑚𝑖) , 𝛼𝑆(𝑚𝑖)}, 𝑚𝑎𝑥{𝛽ℛ(𝑚𝑖) , 𝛽𝑆(𝑚𝑖)}〉: 𝑚𝑖  ∈ 𝑀}. 

V. Inclusion relation; ℛ ⊆  S ⟺  𝛼ℛ(𝑚𝑖) ≤ 𝛼𝑆(𝑚𝑖) and 𝛽ℛ(𝑚𝑖) ≥ 𝛽𝑆(𝑚𝑖) for all 𝑚𝑖  ∈ 𝑀. 

VI. Equality:ℛ = 𝑆 ⟺ 𝛼ℛ(𝑚𝑖) = 𝛼𝑆(𝑚𝑖) and 𝛽ℛ(𝑚𝑖) = 𝛽𝑆(𝑚𝑖) for all 𝑚𝑖  ∈ 𝑀. 

VII. Sum; ℛ ⊕  𝑆 = {⟨𝑚𝑖, 𝛼ℛ(𝑚𝑖) + 𝛼𝑆(𝑚𝑖) – 𝛼ℛ(𝑚𝑖)𝛼𝑆(𝑚𝑖), 𝛽ℛ(𝑚𝑖)𝛽𝑆(𝑚𝑖)⟩: 𝑚𝑖  ∈ 𝑀 }. 

VIII. Product; ℛ ⊗  𝑆 = {⟨𝑚𝑖,𝛼ℛ(𝑚𝑖)𝛼𝑆(𝑚𝑖), 𝛽ℛ(𝑚𝑖) + 𝛽𝑆(𝑚𝑖) − 𝛽ℛ(𝑚𝑖)𝛽𝑆(𝑚𝑖)⟩: 𝑚𝑖  ∈ 𝑀 }. 

Definition 4 ([4]). Supposing 𝔻: IFSs (𝑀)  ×   𝐼𝐹𝑆(𝑀) →[0, 1], and let ℛ, 𝑆 and 𝑇 be IFSs in 𝑀, then 𝔻(ℛ, 𝑆) 

is the distance function of ℛ and 𝑆 provided: 

I. 0 ≤  𝔻(ℛ, 𝑆) ≤ 1. 

II. 𝔻(ℛ, 𝑆) = 0 if and only if ℛ = 𝑆. 

III. 𝔻(ℛ, 𝑆) =  𝔻(𝑆, ℛ). 

IV. 𝔻(ℛ, 𝑆)  +  𝔻(𝑆, 𝑇)  ≥  𝔻(ℛ, 𝑇).  

Definition 5 ([4]). Let 𝜗 be a mapping 𝜗: IFSs (𝑀)  ×  𝐼𝐹𝑆(𝑀) →[0, 1], and let ℛ, 𝑆 and 𝑇 be three IFSs in 𝑀 

then 𝜗(ℛ, 𝑆) is the similarity measure between ℛ and 𝑆 if it satisfies the following properties: 

I. 0 ≤  𝜗(ℛ, 𝑆) ≤ 1, 

II. 𝜗(ℛ, 𝑆) = 1 if and only if ℛ = 𝑆, 

III. 𝜗(ℛ, 𝑆) = 𝜗(𝑆, ℛ), 

IV. If  ℛ ⊆ S ⊆ T  then 𝜗(ℛ, 𝑆) ≤  𝜗(ℛ, 𝑇) and 𝜗 (𝑆, 𝑇)  ≤  𝜗(ℛ, 𝑇).  

2.1|Some Existing IFDMs 

Here, we outline some distance measures for IFSs. Supposing we have two IFSs: 

ℛ = {〈𝑚𝑖 , 𝛼ℛ(𝑚𝑖) 𝛽ℛ(𝑚𝑖)〉: 𝑚𝑖 ∈  𝑀} and 𝑆 = {〈𝑚𝑖 , 𝛼𝑆(𝑚𝑖) 𝛽𝑆(𝑚𝑖)〉: 𝑚𝑖 ∈  𝑀}, 

𝑀 = {𝑚1, 𝑚2, … 𝑚𝑞}. Burillo and Bustince [3] proposed some IFS distance measures as follows: 

𝔻BB1(ℛ, S) =  
1

2
∑(|αℛ(mi) − αS(mi)| +  |βℛ(mi) − β𝐒(mi)|),

q

i=1

 (1) 

𝔻BB2(ℛ, S) =  (
1

2
∑ ((αℛ(mi) − αS(mi))

2 
+  (βℛ(mi) − β𝐒(mi))

2
)

q

i=1

)

1
2 

, (2) 

𝔻BB3(ℛ, S) =  
1

2q
∑(|αℛ(mi) − αS(mi)| +  |βℛ(mi) − β𝐒(mi)|),

q

i=1

 (3) 
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In [4], some distance measures between IFSs were developed to modify the distance measures in [3]: 

Ejegwa et al. [7] modified the work of Szmidt and Kacprzyk [4] by introducing the number of the taxicab 

differences as follows: 

All these IFDMs do not consider the weights of the elements of the IFSs. By considering the weights of the 

elements of the IFSs, we construct a weighted distance function in Section 3. 

3|New Weighted IFDM  

In this segment, we present a new WIFDM with its properties, illustrate the new WIFDM in cases of pattern 

categorization and medical diagnosis with an example, and show its comparison with other existing IFDMs 

to enhance comparative analysis. 

Several existing IFDMs by different researchers have been outlined in Section 2, each considering either two 

or three of the parameters of the IFSs. Here, we modify the distance measure in [8] by incorporating the 

weights of the elements of the IFSs to enhance better applications. Given two IFSs: 

ℛ = {〈𝑚𝑖 , 𝛼ℛ(𝑚𝑖) 𝛽ℛ(𝑚𝑖)〉: 𝑚𝑖 ∈  𝑀} and 𝑆 = {〈𝑚𝑖 , 𝛼𝑆(𝑚𝑖) 𝛽𝑆(𝑚𝑖)〉: 𝑚𝑖 ∈  𝑀} 

in 𝑀 = {𝑚1, 𝑚2, … , 𝑚𝑞} with the hesitancy on ℛ and 𝑆 as 𝐻ℛ(𝑚𝑖) = 1 − 𝛼ℛ(𝑚𝑖) − 𝛽ℛ(𝑚𝑖) and 𝐻𝑆(𝑚𝑖) = 1 −

𝛼𝑆(𝑚𝑖) − 𝛽𝑆(𝑚𝑖), respectively. The new WIFDM between ℛ and 𝑆 is proposed as follows; 

For 𝑟 ≤  2 . If  𝑟 = 1, we get. 

 

𝔻BB4(ℛ, S) =  (
1

2q
∑ ((αℛ(mi) − αS(mi))

2 
+  (βℛ(mi) − β𝐒(mi))

2
)

q

i=1

)

1
2 

. (4) 

𝔻SK1(ℛ, S) =  
1

2
∑ (|αℛ(mi) − αS(mi)| +  |βℛ(mi) − β𝐒(mi)| +  |Hℛ(mi) − H𝐒(mi)|),

q
i=1   (5) 

𝔻SK2(ℛ, S) =  (
1

2
∑ ((αℛ(mi) − αS(mi))

2 
+  (βℛ(mi) − β𝐒(mi))

2
+ (Hℛ(mi) −

q
i=1

H𝐒(mi))
2

))

1

2 
,  

(6) 

𝔻SK3(ℛ, S) =  
1

2q
∑ (|αℛ(mi) − αS(mi)| + |βℛ(mi) − β𝐒(mi)| + |Hℛ(mi) − H𝐒(mi)|)q

i=1 ,  (7) 

𝔻SK2(ℛ, S) =  (
1

2q
∑ ((αℛ(mi) − αS(mi))

2 
+  (βℛ(mi) − β𝐒(mi))

2
+ (Hℛ(mi) −

q
i=1

H𝐒(mi))
2

))

1

2 
.  

(8) 

𝔻Ee1(ℛ, S) =  
1

3
∑ (|αℛ(mi) − αS(mi)| + |βℛ(mi) − β𝐒(mi)| + |Hℛ(mi) − H𝐒(mi)|),

q
i=1   (9) 

𝔻Ee2(ℛ, S) =  (
1

3
∑ ((αℛ(mi) − αS(mi))

2 
+  (βℛ(mi) − β𝐒(mi))

2
+  (Hℛ(mi) −

q
i=1

H𝐒(mi))
2

))

1

2 
,  

(10) 

𝔻Ee3(ℛ, S) =  
1

3q
∑ (|αℛ(mi) − αS(mi)| +  |βℛ(mi) − β𝐒(mi)| +  |Hℛ(mi) − H𝐒(mi)|),

q
i=1   (11) 

𝔻Ee2(ℛ, S) =  (
1

3q
∑ ((αℛ(mi) − αS(mi))

2 
+  (βℛ(mi) − β𝐒(mi))

2
+  (Hℛ(mi) −

q
i=1

H𝐒(mi))
2

))

1

2 
.  

(12) 

𝔻∗(ℛ, S) = (
1

3
∑ Wi (|αℛ(mi) − αS(mi)|r + |βℛ(mi) − β𝐒(mi)|r +  |Hℛ(mi) − H𝐒(mi)|r)q

i=1 )

1

r
.  (13) 

𝔻1
∗ (ℛ, S) = (

1

3
∑ Wi (|αℛ(mi) − αS(mi)| + |βℛ(mi) − β𝐒(mi)| +  |Hℛ(mi) − H𝐒(mi)|)q

i=1 ).  (14) 
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If  𝑟 = 2, we get. 

where the weight 𝑊𝑖 is given by 

In which  

For 𝑊𝑖 ∈ [0,1] such that ∑ 𝑊𝑖 = 1
𝑞
𝑖=1 .  

Next, we verify that 𝔻∗(ℛ, 𝑆) satisfies the axiomatic conditions of an IFDM. 

Theorem 1. Let ℛ, 𝑆 and 𝑇 be three IFSs in 𝑀, then 𝔻(ℛ, 𝑆) satisfies the following properties: 

I. 0 ≤ 𝔻∗(ℛ, 𝑆) ≤ 1. 

II. 𝔻∗(ℛ, 𝑆) = 0 ⟺  ℛ = 𝑆. 

III. 𝔻∗(ℛ, 𝑆) =  𝔻∗(𝑆, ℛ). 

IV. 𝔻∗(ℛ, 𝑇) ≤ 𝔻∗(ℛ, 𝑆)  + 𝔻∗(𝑆, 𝑇). 

Proof: 

(i.) For 0 ≤  𝔻(ℛ, 𝑆) ≤ 1, it is obvious that Eq. (13) satisfies (i) since 

and 

Hence, 0 ≤  𝔻(ℛ, 𝑆) ≤ 1 as required. 

 (ii.) 𝔻∗(ℛ, 𝑆) = 0 ⟺  ℛ = 𝑆. Suppose that 𝔻∗(ℛ, 𝑆) = 0, then from Eq. (13), we have |𝛼ℛ(𝑚𝑖) −

𝛼𝑆(𝑚𝑖)|𝑟 = 0,    |𝛽ℛ(𝑚𝑖) − 𝛽𝑺(𝑚𝑖)|𝑟 = 0  and |𝐻ℛ(𝑚𝑖) − 𝐻𝑺(𝑚𝑖)|𝑟 = 0, 

Thus, 

 

hence ℛ = 𝑆 as required. 

Conversely, if ℛ = 𝑆, it is easy to see that 𝔻∗(ℛ, 𝑆) = 0. 

(iii.) 𝔻∗(ℛ, 𝑆) =  𝔻∗(𝑆, ℛ). This follows since, 

𝔻2
∗ (ℛ, S) = (

1

3
∑ Wi (|αℛ(mi) − αS(mi)|2 + |βℛ(mi) − β𝐒(mi)|2 +  |Hℛ(mi) − H𝐒(mi)|2)q

i=1 )

1

2
 , (15) 

Wi =
αi

β
. (16) 

αi =
3αℛ(mi) + βℛ(mi) + Hℛ(mi)

3
+

3αS(mi) + βS(mi) + HS(mi)

3
, 

β = ∑ (
3αℛ(mi) + βℛ(mi) + Hℛ(mi)

3
+

3αS(mi) + βS(mi) + HS(mi)

3
) .

k

i=1

 

 

0 ≤ |αℛ(mi) − αS(mi)|r ≤ 1, 0 ≤ |βℛ(mi) − β𝐒(mi)|r ≤ 1, 0 ≤ |Hℛ(mi) − H𝐒(mi)|r ≤ 1,  

0 ≤ |αℛ(mi) − αS(mi)|r + |βℛ(mi) − β𝐒(mi)|r + |Hℛ(mi) − H𝐒(mi)|r ≤ 1.  

αℛ(mi) = αS(mi), βℛ(mi) = β𝐒(mi) and Hℛ(mi) = H𝐒(mi),  



 Weighted intuitionistic fuzzy distance metrics in solving cases of… 

 

94

 

  

Hence, 𝔻∗(ℛ, 𝑆) =  𝔻∗(𝑆, ℛ) as required. 

The proof of (iv) is similar. 

Theorem 2. Suppose ℛ, 𝑆 and 𝑇 are IFSs in 𝑀 and ℛ ⊆ 𝑆 ⊆ 𝑇. Then we have, 

I. 𝔻∗(ℛ, 𝑇) ≥  𝔻∗(ℛ, 𝑆), 

II. 𝔻∗(ℛ, 𝑇) ≥  𝔻∗(𝑆, 𝑇), 

III. 𝔻∗(ℛ, 𝑇) ≥ 𝑚𝑎𝑥 {𝔻∗(ℛ, 𝑆), 𝔻∗(𝑆, 𝑇)}. 

Proof: 

If  ℛ ⊆ 𝑆 ⊆ 𝑇, then from Eq. (13), we have 

Thus  

So, 𝔻∗(ℛ, 𝑇) ≥  𝔻∗(ℛ, 𝑆), which proves (i). By the same approach, we have  𝔻∗(ℛ, 𝑇) ≥  𝔻∗(𝑆, 𝑇), so (ii) holds. 

Since (i) and (ii) are true, then (iii) follows. 

4|Applicative Examples  

Here, we apply the new WIFDM and the existing IFDMs to cases of pattern categorization and medical 

identification to enhance comparative analysis and to show how effective the new WIFDM is in solving 

practical problems. 

4.1|Example of Pattern Recognition 

Given three patterns 𝒩1, 𝒩2 and 𝒩3 denoted by IFPs in  𝑀 = {𝑚1, 𝑚, 𝑚3}. Assume there is an unfamiliar 

pattern 𝔇 designated with IFPs in the same space  𝑀. The intuitionistic fuzzy illustrations of the patterns are 

in Table 1. 

                      Table 1. Intuitionistic fuzzy representation of patterns. 

 

 

 

 

Next, we determine the classification of the unknown pattern with the aid of the new WIFDM and the 

enumerated existing IFDMs to know which of the given patterns, i.e. 𝒩1, 𝒩2 and 𝒩3 can be classified with 

𝔻∗(ℛ, S) = (
1

3
∑ Wi (|αℛ(mi) − αS(mi)|r +  |βℛ(mi) − β𝐒(mi)|r +  |Hℛ(mi) −

q
i=1

H𝐒(mi)|r))

1

r
= (

1

3
∑ Wi (|αS(mi) − αℛ(mi)|r +  |βS(mi) − βℛ(mi)|r + |HS(mi) −

q
i=1

Hℛ(mi)|r))

1

r
= 𝔻∗(S, ℛ). 

 

|αℛ(mi) − αT(mi)|r ≥ |αℛ(mi) − αS(mi)|r, |βℛ(mi) − β𝐓(mi)|r ≥ |βℛ(mi) − β𝐒(mi)|r, 

 |Hℛ(mi) − H𝐓(mi)|r ≥ |Hℛ(mi) − H𝐒(mi)|r. 

 

|αℛ(mi) − αT(mi)|r + |βℛ(mi) − β𝐓(mi)|r + |Hℛ(mi) − H𝐓(mi)|r ≥ 

|αℛ(mi) − αS(mi)|r + |βℛ(mi) − β𝐒(mi)|r + |Hℛ(mi) − H𝐒(mi)|r. 

 

Patterns                                          IFPs 
 𝒎𝟏 𝒎𝟐 𝒎𝟑 

𝒩1 〈0.1000, 0.1000〉 〈0.5000, 0.1000〉 〈0.1000, 0.9000〉 
𝒩2 〈0.5000, 0.5000〉 〈0.7000, 0.3000〉 〈0.0000, 0.8000〉 
𝒩3 〈0.7000, 0.2000〉 〈0.1000, 0.8000〉 〈0.4000, 0.4000〉 
𝔇 〈0.4000, 0.4000〉 〈0.6000, 0.2000〉 〈0.0000, 0.8000〉 
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the unknown pattern 𝔇. By using Eq. (16), the weights of the elements in Table 1 are given as a set, 𝑊 =

{0.33. 0.33, 0.33}. The results of the pattern recognition problem using the new distance method are presented 

in Table 2 and Fig. 1. To show the new method's effectiveness, we present a comparative analysis of the pattern 

recognition problem in Table 3 and Fig. 2. 

 

          Table 2. Pattern recognition results using the New WIFDM. 

            

 

 

 

Table 3. Comparative analysis for pattern recognition.  

 

 

 

 

 

 

 

 

 

 

Fig. 1. Graphical representation of Table 2. 

 

Distances (𝓝𝟏, 𝕯) (𝓝𝟐, 𝕯) (𝓝𝟑, 𝕯) 

𝔻1
∗  0.1667 0.0667 0.4000 

𝔻2
∗  0.1915 0.0816 0.4242 

Distances (𝓝𝟏, 𝕯) (𝓝𝟐, 𝕯) (𝓝𝟑, 𝕯) 

𝔻𝐵𝐵1 0.5000 0.2000 1.2000 

𝔻𝐵𝐵2 0.3317 0.1414 0.7280 

𝔻𝐵𝐵3 0.1667 0.0667 0.4000 
𝔻𝐵𝐵4 0.1915 0.0816 0.4203 
𝔻𝑆𝐾1 0.7500 0.3000 1.8000 

𝔻𝑆𝐾2 0.4062 0.1732 0.9000 

𝔻𝑆𝐾3 0.2500 0.1000 0.6000 

𝔻𝐸𝑒1 0.5000 0.2000 1.2000 

𝔻𝐸𝑒2 0.3317 0.1414 0.7280 

𝔻𝐸𝑒3 0.1667 0.0667 0.4000 

𝔻1
∗  0.1667 0.0667 0.4000 

𝔻2
∗  0.1915 0.0816 0.4242 

0

0/05

0/1

0/15

0/2

0/25

0/3

0/35

0/4

0/45

(N1, D) (N2, D) (N3, D)

D*1 D*2
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Fig. 2. Graphical representation of Table 3. 

 

Tables 2 and 3 and Figs. 1 and 2 show that the unidentified pattern 𝔇 can be categorized with 𝒩2, owing to 

the fact that the distance between the unfamiliar pattern 𝔇 and the pattern 𝒩2 is the smallest in both the new 

WIFDM and the existing IFDM [3], [4], [7]. In fact, it is worth noting that the new WIFDM gives the most 

efficient results because; 

I. it includes the hesitation margins of the intuitionistic fuzzy values, unlike the methods in [3]. 

II. It also includes the weights of the elements in the IFSs, unlike the methods in [3], [4], [7]. 

4.2|Example of Medical Diagnosis 

Diagnosis is the procedure of ascertaining/identifying the infection a patient is suffering by differentiating it 

from other possible health conditions. The fuzziness associated with this process often makes the process 

challenging. Here, we present a mathematical approach to medical diagnosis using the new WIFDM, where 

the symptoms of the diseases are exemplified as IFPs using a knowledge-based system. 

Presume there is a collection of diseases, namely Viral Fever, Malaria, Typhoid, Ulcer, and Chest Problem 

represented by V, M, T, U, and C, and a set of symptoms 𝑀 = {𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5}, where 𝑚1 is temperature, 

𝑚2 is headache, 𝑚3 is stomach pain, 𝑚4 is cough and 𝑚5 is chest pain. These symptoms are the clinical 

appearances of the diseases, and suppose a patient 𝑅 shows the stipulated symptoms. The intuitionistic fuzzy 

representations of the illnesses and 𝑅 with respect to 𝑀 are contained in Table 4. 

Table 4. Intuitionistic fuzzy representations of diagnostic process. 

 

 

 

 

 

Next, we evaluate the information in Table 4 using the new WIFDM and the existing IFDM to decide the 

diagnosis. From Table 4 and by using Eq. (16), we get 𝑊 = {0.2, 0.2, 0.2, 0.2, 0.2}. 

  IFSs                                                                                    Symptoms 

 𝐦𝟏 𝐦𝟐 𝐦𝟑 𝐦𝟒 𝐦𝟓 

Viral fever (𝑉) 〈0.40, 0.00〉 〈0.30, 0.50〉 〈0.10, 0.70〉 〈0.40, 0.30〉 〈0.10, 0.70〉 
Malaria (𝑀) 〈0.70, 0.00〉 〈0.20, 0.60〉 〈0.00, 0.90〉 〈0.70, 0.00〉 〈0.10, 0.80〉 
Typhoid (𝑇) 〈0.30, 0.30〉 〈0.60, 0.10〉 〈0.20, 0.70〉 〈0.20, 0.60〉 〈0.10, 0.90〉 
Ulcer (𝑈) 〈0.10, 0.70〉 〈0.20, 0.40〉 〈0.80, 0.00〉 〈0.20, 0.70〉 〈0.20, 0.70〉 
Chest problem (𝐶) 〈0.10, 0.80〉 〈0.00, 0.80〉 〈0.20, 0.80〉 〈0.20, 0.80〉 〈0.80, 0.10〉 
Patient (𝑅)    〈0.60, 0.10〉 〈0.50, 0.40〉 〈0.30, 0.40〉 〈0.70, 0.20〉 〈0.30, 0.40〉 

0

0/2

0/4

0/6

0/8

1

1/2

1/4

1/6

1/8

2

D_BB1D_BB2D_BB3D_BB4D_SK1D_SK2D_SK3D_Ee1 D_Ee2 D_Ee3 D*_1 D*_2

(N1,D) (N2,D) (N3,D)
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Table 5 and Fig 3 present the medical diagnosis results using the new WIFDM. Tables 6 and 4 present 

comparative analysis results for the medical diagnosis results using the IFDMs in [3], [4], [7] and the new 

WIFDM.  

 

                    Table 5. Medical diagnosis results using the new WIFDM. 

 

 

 

                Table 6. Comparative analysis results for medical diagnosis.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Graphical representation of Table 5. 

 

 

Distances (𝑽, 𝑹) (𝑴, 𝑹) (𝑻, 𝑹) (𝑼, 𝑹) (𝑪, 𝑹) 

𝔻1
∗  0.1847 0.2287 0.3113 0.3847 0.4647 

𝔻2
∗  0.2057 0.2758 0.3346 0.4407 0.4864 

Distances (𝑽, 𝑹) (𝑴, 𝑹) (𝑻, 𝑹) (𝑼, 𝑹) (𝑪, 𝑹) 

𝔻𝐵𝐵1 0.9350 1.0150 1.4850 1.9850 2.2850 
𝔻𝐵𝐵2 0.4609 0.5661 0.7242 1.0131 1.0698 
𝔻𝐵𝐵3 0.1870 0.2030 0.2970 0.3970 0.4570 
𝔻𝐵𝐵4 0.2061 0.2532 0.3239 0.4531 0.4784 
𝔻𝑆𝐾1 1.3850 1.7150 2.335 2.8850 3.485 

𝔻𝑆𝐾2 0.5634 0.7553 0.9162 1.2068 1.3321 

𝔻𝑆𝐾3 0.2770 0.3430 0.4670 0.5770 0.6970 

𝔻𝑆𝐾4 0.2520 0.3378 0.4097 0.5397 0.5957 

𝔻𝐸𝑒1 0.9233 1.1433 1.5567 1.9233 2.3233 

𝔻𝐸𝑒2 0.4600 0.6167 0.7481 0.9854 1.0876 

𝔻𝐸𝑒3 0.1847 0.2287 0.3113 0.3847 0.4647 

𝔻𝐸𝑒4 0.2057 0.2758 0.3346 0.4407 0.4864 

𝔻1
∗  0.1847 0.2287 0.3113 0.3847 0.4647 

𝔻2
∗  0.2057 0.2758 0.3346 0.4407 0.4864 

0

0/1

0/2

0/3

0/4

0/5

0/6

(V, R) (M, R) (T, R) (U, R) (C, R)

D*1 D*2
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Fig. 4. Graphical representation of Table 6. 

 

From Tables 5 and 6 and Figs. 3 and 4, it can be concluded that patient 𝑅 is infected with Viral Fever because 

the distance between the patient and Viral Fever is least based on the new WIFDM in Table 5 and the existing 

distance methods [3], [4], [7]. Fig. 4 shows that the new weighted distance method is more reliable since it 

gives the least distance values and considers the hesitation margins of the intuitionistic fuzzy values and the 

weights of the elements of the IIFSs, unlike the existing methods in [3], [4], [7]. 

 5|Conclusion 

Several experts have developed sundry distance-measuring techniques to solve complex world problems. 

Among the developed IFDMs, only a few incorporate the weights of the elements of the IFSs in their 

computation, which may affect the distance output. Owing to the importance of IFS-based weights in 

determining the distance between IFSs, we develop a new WIFDM that incorporates the weights of the 

elements of the IFSs, where the weights are computed from the intuitionistic fuzzy values to enhance reliable 

results. In addition, the WIFDM is applied to discuss a pattern categorization to ascertain the patterns 

associated more closely with an unknown pattern and, in a medical diagnosis problem, to ascertain a patient's 

medical status. Finally, the superiority of the newly developed WIFDM is shown comparatively in relation to 

the existing approaches between IFSs. The newly developed WIFDM can be used to discuss medical 

emergencies [43], admission process [44], football analysis [45], and other cases of decision-making [46], [47] 

via MCDM in future studies. 
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