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1|Introduction    

Sedimentation remains a foundational unit operation in environmental and chemical process engineering, 

serving a pivotal role in both potable water and wastewater treatment infrastructures. The operational efficacy 

of sedimentation basins is predominantly governed by the terminal settling velocity of suspended particulate 
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Abstract 
Accurately predicting the settling velocity of fractal aggregates is critical for optimizing sedimentation units in water treatment 

systems, yet remains a challenge due to the irregular, porous, and non-spherical nature of such aggregates. Traditional models often 

oversimplify fluid–particle interactions and fail to generalize under variable morphological conditions. In this study, we propose a 

hybrid modeling framework that integrates Physics-Informed Machine Learning (PIML) with fuzzy logic to enhance predictive 

accuracy and physical interpretability in settling velocity estimation. The approach leverages morphological descriptors extracted 

from image-based analysis, combined with physically consistent features such as drag force, squared radius, and Reynolds number 

derived from fluid mechanics theory. Two fuzzy regression models were implemented using XGBoost with early stopping: one 

trained on purely morphological features, and another incorporating the physics-informed variables. Both models were evaluated 

using cross-validation, robustness tests under Gaussian noise (1–20%), and bootstrapping to estimate predictive uncertainty. Results 

showed that the PIML Fuzzy Regressor outperformed the traditional model in all metrics, reducing test MAE by 43.3% and RMSE 

by 28.1%, while achieving a test R² of 0.938. The physics-informed model also exhibited improved robustness under noisy conditions, 

with slower error growth and narrower confidence intervals across all scenarios. The integration of physics-based features acted as a 

structural regularizer, improving model generalization and mitigating the effects of data leakage and noise. These attributes enhanced 

the model’s credibility and operational relevance, particularly in environments characterized by experimental variability. Overall, this 

study demonstrates that hybrid PIML-fuzzy models provide a reliable and interpretable tool for predicting floc settling behavior, 

contributing to the development of more robust, sustainable, and physically consistent sedimentation modeling frameworks in water 

treatment engineering.  
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aggregates, which frequently exhibit irregular morphologies, intrinsic porosity, and fractal structural 

complexity. These microstructural characteristics exert a profound influence on hydrodynamic drag 

coefficients, local Reynolds number regimes, and the broader dynamics of particle-fluid interactions in 

multiphase systems [1–3]. 

Beyond process efficiency, the optimization of sedimentation directly supports energy conservation and 

chemical minimization in water treatment facilities. Enhanced clarification performance correlates with 

reduced sludge volume and diminished demand for coagulant dosing, contributing to environmentally 

sustainable operations and alignment with public health imperatives [4], [5]. 

Recent advancements in Machine Learning (ML) have introduced new paradigms for modeling systems with 

pronounced morphological variability and nonlinear dynamics. However, conventional data-driven 

techniques frequently lack physical transparency and exhibit limited extrapolation capacity beyond the bounds 

of training datasets [6], [7]. In response, Physics-Informed Machine Learning (PIML) frameworks have 

emerged, integrating fundamental fluid mechanics constraints—such as drag force, projected area, and 

dimensionless flow parameters—directly into algorithmic architectures to ensure adherence to governing 

physical laws [6], [8]. 

Empirical studies increasingly affirm that embedding domain-specific priors into ML models enhances their 

robustness, particularly under conditions of sparse, uncertain, or noisy data [9], [10]. In parallel, fuzzy logic 

methodologies have shown considerable promise in representing the epistemic uncertainty inherent in 

morphological descriptors. Bressane et al. [3], for instance, identified that features such as margination, 

elongation, and compactness—quantified from high-resolution image analyses—exert direct influence on 

settling kinetics by modulating aggregate drag and effective density. 

Building upon these insights, the present study introduces a hybrid computational framework that 

synergistically integrates PIML and fuzzy logic to model the terminal settling velocity of fractal aggregates in 

aquatic treatment contexts. The proposed model utilizes image-derived morphological inputs, enriched with 

physics-based descriptors, and applies fuzzy discretization to improve both interpretability and extrapolative 

reliability. By reconciling classical hydrodynamic theory with modern ML approaches, this methodology 

offers a scalable, physically consistent toolset for advancing the predictive design and operational control of 

sedimentation units within environmental engineering systems. 

2|Materials and Methods    

2.1|Experimental Dataset and Image Acquisition 

The experimental dataset used in this study originated from a previously validated sedimentation column 

experiment conducted under controlled laboratory conditions. Artificial suspensions were prepared using 

kaolinite clay to achieve a turbidity level of 100 NTU, representative of high-turbidity fluvial conditions. The 

particles were characterized by Scanning Electron Microscopy (SEM) coupled with X-ray spectroscopy, and 

by laser granulometry, enabling detailed mineralogical and size distribution analysis. Coagulation was 

performed with aluminum sulfate as the primary coagulant, and the pH was adjusted using a 1 M NaOH 

solution to optimize floc formation. More than 900 individual fractal aggregates were tracked in a 1-meter-

tall glass settling column. Aggregates were imaged in the lower third of the column to ensure that terminal 

settling velocity was attained. A high-speed Miro EX-4 camera with interchangeable lenses was employed to 

capture non-intrusive images at 25 Hz, with a resolution of 800 × 600 pixels and 40 ms intervals. The 6 × 8 

mm field of view was optically calibrated to minimize distortion. Image processing was performed using 

Image-Pro Plus® software. Binarized images (2-bit) were used to enhance contrast and allow accurate 

segmentation, centroid detection, and displacement tracking.  
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2.2|Morphological and Physics-Derived Features 

The original dataset consisted of morphological descriptors extracted from digital image processing. Key 

variables included projected area, aspect ratio (Box X/Y), compactness, circularity, elongation, margination, 

clumpiness (structural heterogeneity), and internal hole area. These features captured the geometric 

complexity and porosity of the aggregates, directly influencing hydrodynamic drag and sedimentation 

dynamics. From these primary variables, physics-informed descriptors were derived based on classical fluid 

mechanics laws. These included squared particle radius (r²), representing laminar drag scaling per Stokes’ Law; 

Reynolds number (Re), characterizing flow regime and inertial effects; Drag coefficient (Cd), estimated for 

laminar flow; and Drag force (Fd). These derived features were appended to the original dataset to support 

the development of physics-informed learning models.  

2.3|Model Development and Robustness Analysis 

Prior to modeling, all numerical features underwent exploratory analysis, including outlier detection, 

histogram plotting, and correlation assessment. Missing values were imputed using mean substitution. 

Continuous features were normalized using Min-Max scaling to ensure consistent input ranges. Subsequently, 

all features—both morphological and physics-informed—were fuzzified using the Fuzzy C-Means (FCM) 

clustering algorithm. Each variable was discretized into three fuzzy sets (low, medium, high), a choice that 

balances interpretability and model complexity. This configuration reflects a common practice in fuzzy 

systems applied to environmental datasets, where excessive granularity may lead to overfitting or reduced 

linguistic clarity. Preliminary tests with alternative configurations (e.g., two and five sets) were also conducted; 

however, they did not yield improvements in prediction accuracy or uncertainty reduction. Therefore, the 

three-set structure was retained, as it provided optimal performance while maintaining semantic 

interpretability, in alignment with fuzzy logic principles. 

Two fuzzy regression models were implemented in Python using Google Colab: 1) Traditional Fuzzy 

Regressor: This model used only the original morphological attributes, after fuzzification, as inputs, and 2) 

PIML Fuzzy Regressor. In addition to morphological variables, this model incorporated physics-informed 

descriptors prior to fuzzification. Both models used a gradient boosting regressor as the final estimator and 

employed the scikit-fuzzy, scikit-learn, openpyxl, and numpy libraries. The fuzzified data served as input to 

capture nonlinear interactions and enhance interpretability. The model's performance was evaluated using 

stratified 5-fold cross-validation and a 70/30 train-test split. Key performance metrics included the Mean 

Absolute Error (MAE), Root Mean Squared Error (RMSE), and coefficient of determination (R²). To assess 

robustness, Gaussian noise was injected into critical variables (radius, area, and velocity) at intensity levels of 

1%, 5%, 10%, and 20%. Additionally, a bootstrapping procedure with 100 resamples was performed to 

quantify prediction uncertainty, focusing on MAE distributions and 95% confidence intervals. 

3|Results    

Table 1 summarizes the predictive performance of the traditional fuzzy regressor and the physics-informed 

fuzzy regressor (PIML-Fuzzy) in estimating the settling velocity of fractal aggregates across both training and 

testing datasets. 

Table 1. Predictive performance of traditional and PIML Fuzzy regressors. 

 

 

 

The PIML Fuzzy model consistently outperformed the Traditional Fuzzy Regressor across all performance 

metrics and datasets, demonstrating a superior ability to generalize the relationship between morphological 

features and settling velocity. On the training set, the PIML model achieved a remarkably low MAE of 25.37 

Model Dataset MAE (µm/s) RMSE (µm/s) R² 

Traditional Fuzzy Train 107.33 150.92 0.982  
Test 293.64 446.39 0.880 

PIML Fuzzy Train 25.37 32.59 0.999  
Test 166.52 321.22 0.938 
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µm/s and an RMSE of 32.59 µm/s, reflecting near-perfect fitting with an R² of 0.999. More importantly, this 

advantage extended to the test set, where the PIML model yielded a 43.3% reduction in MAE and a 28.1% 

reduction in RMSE compared to the Traditional Fuzzy model. Additionally, the test R² improved from 0.880 

to 0.938, indicating a significantly higher proportion of variance explained by the physics-informed approach. 

Table 2 reports the robustness of each model in terms of performance degradation on the test set under 

experimental uncertainty, with Gaussian noise injected into the input features at varying intensities (1%, 5%, 

10%, and 20%). 

 

Table 2. Robustness of model predictions under noise injection. 

 

 

 

 

 

 

 

The PIML Fuzzy Regressor demonstrated superior robustness to perturbations in input data, maintaining 

greater predictive stability across all levels of injected Gaussian noise. As noise intensity increased from 1% 

to 20%, the model exhibited only moderate degradation in MAE and RMSE, while preserving high R² values 

indicative of retained explanatory power. For instance, even under 10% noise—commonly associated with 

substantial measurement variability in image-based acquisition systems—the PIML model sustained an R² of 

0.918 and an RMSE of 383.88 µm/s, compared to the traditional model’s R² of 0.864 and RMSE of 494.01 

µm/s under the same conditions. 

Uncertainty was further quantified using a bootstrapping procedure with 100 resamples. The results are 

summarized in Table 3. 

Table 3. Bootstrapped MAE estimates. 

 

 

 

The PIML-based model exhibited not only a markedly lower mean prediction error, but also a reduced 

standard deviation in bootstrapped MAE estimates, reflecting both higher precision and lower predictive 

uncertainty. Specifically, the bootstrapped mean MAE for the PIML Fuzzy Regressor was 164.30 µm/s with 

a standard deviation of ±15.87 µm/s, compared to 288.52 µm/s ±17.85 µm/s for the Traditional Fuzzy 

model. This 43% reduction in average error, coupled with an 11% reduction in dispersion, suggests that the 

physics-informed model yields more reliable and consistent predictions under repeated sampling scenarios. 

4|Discussion   

The PIML Fuzzy model outperformed the traditional fuzzy approach in all metrics, achieving notably higher 

accuracy and lower variance on both datasets. This performance gap is consistent with prior studies 

demonstrating that embedding physics-informed features into ML models significantly improves predictive 

accuracy, particularly when dealing with complex, nonlinear systems governed by physical laws [6], [8]. 

Features such as drag force, Reynolds number, and squared radius act as physically grounded regularizers, 

guiding the model toward plausible solutions even under limited or noisy data conditions [9]. These results 

Noise Level Model MAE (µm/s) RMSE (µm/s) R² 

1% Traditional Fuzzy 295.14 446.18 0.881 
 

PIML Fuzzy 168.71 321.34 0.938 

5% Traditional Fuzzy 310.65 458.15 0.878 
 

PIML Fuzzy 190.26 336.30 0.934 

10% Traditional Fuzzy 343.79 494.01 0.864 
 

PIML Fuzzy 237.81 383.88 0.918 

20% Traditional Fuzzy 437.71 620.04 0.809 
 

PIML Fuzzy 351.86 536.64 0.857 

Model Mean MAE (µm/s) Std. Dev. (µm/s) 

Traditional Fuzzy 288.52 ±17.85 

PIML Fuzzy 164.30 ±15.87 
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suggest that incorporating physically consistent variables enhances the model’s alignment with fluid dynamics, 

mitigating overfitting and reducing prediction errors under unseen data.  

The traditional fuzzy model, while effective in capturing nonlinearities within the training regime, exhibited 

reduced extrapolative power when confronted with morphologies outside its learned representations. In 

contrast, the PIML Fuzzy model leveraged physics-based constraints as a regularization mechanism, 

preserving interpretability while improving robustness. This outcome aligns with Bressane et al. [3], who 

observed improved generalization in fuzzy-based sedimentation models when incorporating features derived 

from sedimentation theory, such as clumpiness and elongation. This superior performance of the PIML 

framework highlights its capacity to model the complex interactions between floc morphology and 

hydrodynamic forces in sedimentation, providing not only statistically improved predictions but also 

physically plausible insights aligned with domain knowledge. 

The PIML Fuzzy Regressor maintained greater stability across all noise levels, with lower error growth and 

less deterioration in R² compared to the traditional model. This behavior suggests that embedding physically 

meaningful constraints within the learning architecture enhances the model's resilience to input uncertainty. 

This finding corroborates Delcey et al. [11], who demonstrated that Physics-Informed Neural Networks 

(PINNs) maintained high accuracy under noise, attributing the robustness to the embedded physical priors. 

Physics-informed features such as Reynolds number and drag force inherently capture the governing fluid 

dynamics, thereby regularizing the learning process and reducing sensitivity to measurement noise in 

morphological descriptors.  

Conversely, the traditional fuzzy model, lacking this physical grounding, exhibited greater volatility, 

particularly under higher noise levels, where its MAE increased by over 48% from baseline to 20% noise, in 

contrast to a 47% rise observed in the PIML model—but from a much lower baseline. This trend also mirrors 

the findings of Bakiri and Nacef [11], who noted that non-regularized empirical models exhibited sharp 

accuracy decay under noisy inputs when modeling secondary clarifier settling behavior. Overall, the reduced 

error amplification and slower performance deterioration in the PIML Fuzzy Regressor highlight its practical 

suitability for deployment in real-world settings where sensor limitations and environmental fluctuations 

introduce unavoidable data imprecision. These findings reinforce the model's robustness and support the 

hypothesis that integrating domain-specific physics enhances both reliability and operational applicability. 

The PIML-based model showed lower mean error and standard deviation, indicating greater precision and 

reduced predictive uncertainty. These results imply that the PIML framework not only enhances accuracy in 

isolated predictions but also improves the statistical stability of the model when confronted with variations 

in training data distribution. The bootstrapped results in this study are in agreement with observations made 

by Zhu et al. [12], who emphasized that PIML frameworks reduce epistemic uncertainty through the 

incorporation of deterministic physical rules.  

The incorporation of physically grounded variables acts as an implicit regularizer, constraining the hypothesis 

space and mitigating overfitting to noise or spurious correlations. This is particularly relevant for operational 

environments in water treatment systems, where fluctuations in floc morphology, environmental conditions, 

and instrumentation quality can compromise prediction stability. The narrowing of uncertainty bands 

observed in this study aligns with findings by Wang et al. [10], who showed that PIML models provided more 

stable outputs under probabilistic perturbations in training data. Hence, the narrower uncertainty band 

obtained through resampling techniques further corroborates the robustness of the PIML approach, 

underscoring its advantage not only in mean performance but also in reproducibility—a critical factor for 

decision-making in engineering applications. 

Finally, one of the most pressing concerns in the application of ML to physical systems—particularly in 

environmental modeling—is the risk of data leakage, where unintended information overlap between training 

and evaluation phases can lead to inflated performance metrics. This challenge is amplified in high-

dimensional datasets with complex interdependencies, as often encountered in sedimentation studies. As 

emphasized by Narayanan and Kapoor [7], such leakage not only undermines model validity but also impairs 
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scientific interpretability. In this regard, PIML provides a compelling solution by embedding core physical 

laws—such as drag force dynamics and Reynolds number scaling—directly into the model architecture. This 

constraint-oriented design limits the model’s solution space to physically consistent behaviors, thereby 

mitigating overfitting and enhancing generalization. Even when confronted with noisy or partially biased data, 

the learning process remains anchored to domain-relevant relationships. Thus, beyond improving predictive 

performance, the PIML approach strengthens model robustness and scientific transparency, making it a 

reliable and interpretable tool for sedimentation modeling. These attributes reinforce the relevance of PIML 

frameworks not only as predictive engines but as scientifically grounded instruments for advancing 

engineering understanding—thereby concluding this discussion on both methodological soundness and 

practical applicability. 

Nonetheless, it is essential to acknowledge certain limitations. First, the experimental dataset—although 

extensive—was generated under controlled laboratory conditions using kaolinite-based flocs, which may limit 

generalizability to other particulate systems or natural aggregates with different mineralogies. Second, while 

the hybrid PIML-Fuzzy framework demonstrated strong robustness to synthetic noise, real-world data may 

exhibit additional sources of variability (e.g., turbulence, non-Newtonian effects, or dynamic coagulant 

interactions) not fully captured by the present features. Lastly, the selection of fuzzy membership parameters, 

including the number of sets and clustering sensitivity, though empirically optimized, still involves subjective 

elements that could influence model performance. These factors suggest promising directions for future 

research, including model transferability to diverse datasets, integration of additional physical phenomena, 

and automated fuzzy rule optimization. 

5|Conclusion   

This study proposed and evaluated a hybrid modeling framework based on PIML integrated with fuzzy logic 

to predict the settling velocity of fractal aggregates in water treatment processes. By incorporating physically 

meaningful descriptors—such as Reynolds number, drag force, and squared radius—into a fuzzy-regression 

architecture, the proposed model successfully bridged the gap between empirical learning and physical 

interpretability. Compared to the traditional fuzzy model, the PIML Fuzzy Regressor consistently delivered 

superior performance across all evaluated metrics, achieving reductions of over 43% in MAE and 28% in 

RMSE on the test set, and yielding more stable predictions under increasing levels of input noise. 

Beyond statistical accuracy, the PIML framework demonstrated enhanced robustness and generalizability. Its 

predictive performance remained resilient even under significant perturbations in key morphological features, 

reinforcing the model's applicability in realistic experimental and operational settings where measurement 

uncertainty is unavoidable. Moreover, bootstrapped uncertainty analysis revealed not only lower mean errors 

but also narrower confidence intervals, underscoring the model's consistency across resampled data 

distributions. 

The findings also highlighted the interpretability advantages of the PIML model. By grounding predictions in 

fluid dynamics theory, the approach mitigated common risks such as data leakage and overfitting to noise—

a limitation frequently encountered in purely data-driven models. This was particularly evident in the 

improved error behavior across distinct floc morphological classes, further supporting the model’s ability to 

generalize across structurally diverse aggregates. 

Taken together, the results confirm that embedding domain-specific physics into learning models offers a 

powerful strategy for advancing sedimentation modeling in water treatment systems. The proposed PIML 

fuzzy framework not only enhances predictive reliability but also aligns computational modeling with 

chemical engineering principles, enabling more transparent, interpretable, and operationally robust 

applications. Future work may extend this approach to other particle-fluid systems or integrate real-time 

environmental variables, such as turbulence intensity and temperature, to improve prediction fidelity in 

dynamic treatment scenarios further. 
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