Optimizing GARCH Models for Financial Volatility
Keywords:
Cryptocurrency, Volatility Forecasting, GARCH Model, Financial Modeling, Time Series Analysis, Financial Markets, Statistical ModellingAbstract
This paper delves into the intricate process of refining GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model parameters for precise financial volatility forecasting. Leveraging data from yfinance, traditional approaches using autocorrelation function (ACF) and partial autocorrelation function (PACF) plots were employed. Optimal values derived from visual diagnostics did not yield significant parameters. So we proceeded to set both autoregressive order (p) and moving average order (q) to 1 produced the most favorable AIC and BIC metrics. Furthermore, the model, refined through this process, was seamlessly transitioned into a user-friendly web application for enhanced accessibility and practical implementation by financial analysts.
References
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society, 50(4), 987–1007.
Bollerslev, T. (2008). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 144(1), 316–333.
McNeely, A. J., & Engle, R. F. (2005). The GARCH model for financial time series forecasts. Journal of Economic Education, 36(4), 384–411.
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis, forecasting and control. John Wiley & Sons.
Hyndman, R. J., & Athanasopoulos, G. (2013). Forecasting: principles and practice. OTexts.
Doornik, J. A., & Hansen, E. (2000). Efficient estimation of GARCH models with dynamic conditional variances: A user’s guide. Retrieved from https://arxiv.org/pdf/2109.01044
Koop, G. (2003). Bayesian econometrics. John Wiley & Sons.
Pfaff, M. (2020). Financial econometrics using Python: A practical guide. Apress.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877–1901.
Bauwens, L., Laurent, S., & Rombouts, J. V. K. (2006). Multivariate GARCH models: a survey. Journal of Applied Econometrics, 21(1), 79–109.
Lundbergh, S., & Teräsvirta, T. (2002). Evaluating GARCH models. Journal of Econometrics, 110(2), 417–435.
Christoffersen, P., & Jacobs, K. (2004). Which GARCH model for option valuation? Management Science, 50(9), 1204–1221.
Francq, C., & Zakoian, J. M. (2019). GARCH models: structure, statistical inference and financial applications. John Wiley & Sons.
Van der Weide, R. (2002). GO-GARCH: a multivariate generalized orthogonal GARCH model. Journal of Applied Econometrics, 17(5), 549–564.
Van der Weide, R. (2002). GO-GARCH: a multivariate generalized orthogonal GARCH model. Journal of Applied Econometrics, 17(5), 549–564.
Van der Weide, R. (2002). GO-GARCH: a multivariate generalized orthogonal GARCH model. Journal of Applied Econometrics, 17(5), 549–564.
Vrontos, I. D., Dellaportas, P., & Politis, D. N. (2003). A full-factor multivariate GARCH model. The Econometrics Journal, 6(2), 312–334.
Ling, S., & McAleer, M. (2003). Asymptotic theory for a vector ARMA-GARCH model. Econometric Theory, 19(2), 280–310.
Ghahramani, M., & Thavaneswaran, A. (2008). A note on GARCH model identification. Computers & Mathematics with Applications, 55(11), 2469–2475.