A study on traditional water quality assessment methods
Keywords:
Water, Water pollution, Water quality, Assessment methods, Traditional water assessmentAbstract
Water quality has been damaged in countries with abundant water resources. They often have significant pollution levels in the rivers. The three most prevalent anthropogenic activities are industrial regions, sewage, agriculture, and animal husbandry. Water pollution can also result from natural calamities like floods and the illegal disposal of chemical waste. Water pollution harms human health, the environment, society, the economy, and wildlife. Hence, water quality assessment is crucial for reducing challenges associated with or caused by water pollution. This study delved into reviewing different traditional water quality assessment methods to identify the most advantageous one. The traditional water quality assessment methods are the single-factor assessment method, numerous pollution index, comprehensive pollution index method, principle component analysis, fuzzy comprehensive evaluation method, and water quality identification index. The strengths and weaknesses of all these methods were examined, and it was discovered that the water quality identification index would be more plausible; however, it is costly.
References
[1] Gayathri, S., Krishnan, K. A., Krishnakumar, A., Maya, T. M. V., Dev, V. V, Antony, S., & Arun, V. (2021). Monitoring of heavy metal contamination in Netravati river basin: overview of pollution indices and risk assessment. Sustainable water resources management, 7(2), 20. https://doi.org/10.1007/s40899-021-00502-2
[2] Taru, Y. K., & Karwankar, A. (2017). Water monitoring system using arduino with labview. Proceedings of the international conference on computing methodologies and communication, ICCMC 2017 (Vol. 2018-Janua, pp. 416–419). IEEE. DOI: 10.1109/ICCMC.2017.8282722
[3] World Health Organization. (2020). Drinking water. https://www.who.int/news-room/fact-sheets/detail/drinking-water
[4] Hu, C., Li, M., Zeng, D., & Guo, S. (2018). A survey on sensor placement for contamination detection in water distribution systems. Wireless networks, 24(2), 647–661. DOI:10.1007/s11276-016-1358-0
[5] Hrudey, S. E., Payment, P., Huck, P. M., Gillham, R. W., & Hrudey, E. J. (2003). A fatal waterborne disease epidemic in Walkerton, Ontario: comparison with other waterborne outbreaks in the developed world. Water science and technology, 47(3), 7–14. DOI:10.2166/wst.2003.0146
[6] Rahmat, R. F., Syahputra, M. F., Lydia, M. S., & others. (2016). Real time monitoring system for water pollution in lake toba. 2016 international conference on informatics and computing (ICIC) (pp. 383–388). IEEE.
[7] Adeniran, A. O., Ilugbami, F. M., & Oyeniran, G. T. (2024). A literature review on the effect of plastic waste deposits on soil ecosystem. Annals of ecology and environmental science, 6(1), 23–31. DOI:10.22259/2637-5338.0601003
[8] Morse, N. B., & Wollheim, W. M. (2014). Climate variability masks the impacts of land use change on nutrient export in a suburbanizing watershed. Biogeochemistry, 121(1), 45–59. DOI:10.1007/s10533-014-9998-6
[9] Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) - A case study. Water research, 38(18), 3980–3992. DOI:10.1016/j.watres.2004.06.011
[10] Shin, J. Y., Artigas, F., Hobble, C., & Lee, Y. S. (2013). Assessment of anthropogenic influences on surface water quality in urban estuary, northern New Jersey: multivariate approach. Environmental monitoring and assessment, 185(3), 2777–2794. DOI:10.1007/s10661-012-2748-0
[11] Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environmental modelling & software, 22(4), 464–475.
[12] National Research Council. (2001). Assessing the TMDL approach to water quality management. National Academies Press.
[13] Huang, F., Wang, X., Lou, L., Zhou, Z., & Wu, J. (2010). Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. Water research, 44(5), 1562–1572. https://doi.org/10.1016/j.watres.2009.11.003
[14] Massoud, M. A. (2012). Assessment of water quality along a recreational section of the Damour River in Lebanon using the water quality index. Environmental monitoring and assessment, 184(7), 4151–4160. DOI:10.1007/s10661-011-2251-z
[15] Xu, Z. X. (2005). Comprehensive water quality identification index for environmental quality assessment of surface water. Tongji daxue xuebao/journal of tongji university, 33(4), 482–488.
[16] Fu, T. Y., Zou, Z. H., & Wang, X. J. (2014). Water quality assessment for Taizi River watershed in Liaoyang section based on multivariate statistical analysis and water quality identification index. Acta scientiae circumstantiae, 34(2), 473–480.
[17] Ban, X., Wu, Q., Pan, B., Du, Y., & Feng, Q. (2014). Application of composite water quality identification index on the water quality evaluation in spatial and temporal variations: a case study in Honghu Lake, China. Environmental monitoring and assessment, 186(7), 4237–4247. DOI:10.1007/s10661-014-3694-9
[18] Devi, V. (2021). Pollution detected in Sungai Kim Kim following public complaints. Star, 1, 6–11. https://www.thestar.com.my/news/nation/2021/08/01/pollution-detected-in-sungai-kim-kim-following-public-complaints
[19] See, K. L., Nayan, N., & Rahaman, Z. A. (2017). Flood disaster water supply: a review of issues and challenges in Malaysia. International journal of academic research in business and social sciences, 7(10), 525–532.
[20] Khatri, P., Kumar Gupta, K., & Kumar Gupta, R. (2019). Raspberry Pi-based smart sensing platform for drinking-water quality monitoring system: a Python framework approach. Drinking water engineering and science, 12(1), 31–37. DOI:10.5194/dwes-12-31-2019
[21] Abdul Rahman, H. (2021). Water issues in Malaysia. International journal of academic research in business and social sciences, 11(8), 860–875. DOI:10.6007/ijarbss/v11-i8/10783
[22] Carrard, N., Foster, T., & Willetts, J. (2019). Groundwater as a source of drinking water in southeast Asia and the Pacific: a multi-country review of current reliance and resource concerns. Water, 11(8), 1605. https://doi.org/10.3390/w11081605
[23] Singh, K. P., Basant, N., & Gupta, S. (2011). Support vector machines in water quality management. Analytica chimica acta, 703(2), 152–162. DOI:10.1016/j.aca.2011.07.027
[24] Nurul-Ruhayu, M. R., An, Y. J., & Khairun, Y. (2015). Detection of river pollution using water quality index: a case study of tropical rivers in Penang Island, Malaysia. Open access library journal, 2(3), 1–8. DOI:10.4236/oalib.1101209
[25] Razman, N. A., Wan Ismail, W. Z., Abd Razak, M. H., Ismail, I., & Jamaludin, J. (2023). Design and analysis of water quality monitoring and filtration system for different types of water in Malaysia. International journal of environmental science and technology, 20(4), 3789–3800. DOI:10.1007/s13762-022-04192-x
[26] Bhandari, N. S., & Nayal, K. (2008). Correlation study on physico-chemical parameters and quality assessment of Kosi river water, Uttarakhand. E-journal of chemistry, 5(2), 342–346. DOI:10.1155/2008/140986
[27] Verma, A. K., & Singh, T. N. (2013). Prediction of water quality from simple field parameters. Environmental earth sciences, 69(3), 821–829. DOI:10.1007/s12665-012-1967-6
[28] Khatoon, N. (2013). Correlation study for the assessment of water quality and its parameters of Ganga River, Kanpur, Uttar Pradesh, India. IOSR journal of applied chemistr, 5(3), 80–90. DOI:10.9790/5736-0538090
[29] Ali, M., & Qamar, A. M. (2013). Data analysis, quality indexing and prediction of water quality for the management of rawal watershed in pakistan. Eighth international conference on digital information management (ICDIM 2013) (pp. 108–113). IEEE.
[30] EPA. (2013). Water quality event detection system challenge: methodology and findings. https://www.epa.gov/sites/production/files/2015-07/documents/water_quality_event_detection_system_challenge_methodology_and_findings.pdf
[31] Patel, J. Y., & Vaghani, M. V. (2015). Correlation study for assessment of water quality and its parameters of Par River Valsad , Gujarat , India. International journal of innovative and emerging research in engineering, 2(2), 150–156.
[32] Cabral, J. P., & Marques, C. (2006). Faecal coliform bacteria in febros river (Northwest Portugal): temporal variation, correlation with water parameters, and species identification. Environmental monitoring and assessment, 118(1–3), 21–36. DOI:10.1007/s10661-006-0771-8
[33] Ragavan, E., Hariharan, C., Aravindraj, N., & Manivannan, S. S. (2016). Real time water quality monitoring system. International journal of pharmacy and technology, 8(4), 26199–26205. https://www.researchgate.net/publication/316886673_Real_time_water_quality_monitoring_system
[34] Bernama. (2020). Bernama-160 cases of river pollution during MCO-Tuan Ibrahim. Bernama: Putrajaya, Malaysia. https://www.bernama.com/en/
[35] Lee Goi, C. (2020). The river water quality before and during the Movement Control Order (MCO) in Malaysia. Case studies in chemical and environmental engineering, 2, 100027. DOI:10.1016/j.cscee.2020.100027
[36] Zulkifli, S. N., Rahim, H. A., & Lau, W. J. (2018). Detection of contaminants in water supply: a review on state-of-the-art monitoring technologies and their applications. Sensors and actuators, b: chemical, 255, 2657–2689. DOI:10.1016/j.snb.2017.09.078
[37] Cozzolino, D. (2022). Advantages, opportunities, and challenges of vibrational spectroscopy as tool to monitor sustainable food systems. Food analytical methods, 15(5), 1390–1396. DOI:10.1007/s12161-021-02207-w
[38] Du, R., Yang, D., & Yin, X. (2022). Rapid detection of three common bacteria based on fluorescence spectroscopy. Sensors, 22(3), 1168. DOI:10.3390/s22031168
[39] Barabde, M. N., & Danve, S. R. (2015). Continuous water quality monitoring system for water resources at remote places. International journal of engineering research and general science, 3(3), 172–177. www.ijergs.org
[40] Paepae, T., Bokoro, P. N., & Kyamakya, K. (2021). From fully physical to virtual sensing for water quality assessment: a comprehensive review of the relevant state-of-the-art. Sensors, 21(21), 6971. DOI:10.3390/s21216971
[41] Mercy Amrita, C., & Babiyola, D. (2018). Analysis the water quality parameters from traditional to modern methods in aquaculture. International journal of science, environment and technology, 7(6), 1954–1961. www.ijset.net
[42] Mahajan, P., & Shahane, P. (2021). An IoT based system for water quality monitoring. SSRN electronic journal. DOI:10.2139/ssrn.3769765
[43] Pasika, S., & Gandla, S. T. (2020). Smart water quality monitoring system with cost-effective using IoT. Heliyon, 6(7). DOI:10.1016/j.heliyon.2020.e04096
[44] Burbery, L., Abraham, P., Wood, D., & de Lima, S. (2021). Applications of a UV optical nitrate sensor in a surface water/groundwater quality field study. Environmental monitoring and assessment, 193(5), 303. DOI:10.1007/s10661-021-09084-0
[45] Li, Y., Wang, X. K., Zhang, H. Y., Wang, J. Q., & Li, L. (2021). An integrated regional water quality assessment method considering interrelationships among monitoring indicators. Environmental monitoring and assessment, 193(4), 1–20. DOI:10.1007/s10661-021-08992-5
[46] Horvat, M., Horvat, Z., & Pastor, K. (2021). Multivariate analysis of water quality parameters in Lake Palic, Serbia. Environmental monitoring and assessment, 193(7), 410. DOI:10.1007/s10661-021-09195-8
[47] Hasan, M. N., Rahman, K., Tajmunnaher, & Bhuia, M. R. (2020). Assessment of ground water quality in the vicinity of Sylhet City, Bangladesh: a multivariate analysis. Sustainable water resources management, 6(5), 1–16. DOI:10.1007/s40899-020-00448-x
[48] Khatri, N., Tyagi, S., Rawtani, D., & Tharmavaram, M. (2020). Assessment of river water quality through application of indices: a case study River Sabarmati, Gujarat, India. Sustainable water resources management, 6(6), 101. DOI:10.1007/s40899-020-00459-8
[49] Li, S., & Zhang, Q. (2010). Spatial characterization of dissolved trace elements and heavy metals in the upper Han River (China) using multivariate statistical techniques. Journal of hazardous materials, 176(1–3), 579–588.
[50] Mei, K., Liao, L., Zhu, Y., Lu, P., Wang, Z., Dahlgren, R. A., & Zhang, M. (2014). Evaluation of spatial-temporal variations and trends in surface water quality across a rural-suburban-urban interface. Environmental science and pollution research, 21(13), 8036–8051. DOI:10.1007/s11356-014-2716-z
[51] Lu, W. J., & Zhang, T. (2009). Comparison and analysis of several appraisal methods for river water quality. Environmental science and management, 34(6), 174–176.
[52] Yang, L., Mei, K., Liu, X., Wu, L., Zhang, M., Xu, J., & Wang, F. (2013). Spatial distribution and source apportionment of water pollution in different administrative zones of Wen-Rui-Tang (WRT) river watershed, China. Environmental science and pollution research, 20(8), 5341–5352. DOI:10.1007/s11356-013-1536-x
[53] Lu, P., Mei, K., Zhang, Y., Liao, L., Long, B., Dahlgren, R. A., & Zhang, M. (2011). Spatial and temporal variations of nitrogen pollution in Wen-Rui Tang River watershed, Zhejiang, China. Environmental monitoring and assessment, 180(1–4), 501–520. DOI:10.1007/s10661-010-1802-z
[54] Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., … & Kouimtzis, T. (2003). Assessment of the surface water quality in Northern Greece. Water research, 37(17), 4119–4124. DOI:10.1016/S0043-1354(03)00398-1
[55] Liu, X., Heilig, G. K., Chen, J., & Heino, M. (2007). Interactions between economic growth and environmental quality in Shenzhen, China’s first special economic zone. Ecological economics, 62(3–4), 559–570. DOI:10.1016/j.ecolecon.2006.07.020
[56] Hope, C., Parker, J., & Peake, S. (1992). A pilot environmental index for the UK in the 1980s. Energy policy, 20(4), 335–343. DOI:10.1016/0301-4215(92)90048-7
[57] Wagenschein, D., & Rode, M. (2008). Modelling the impact of river morphology on nitrogen retention-a case study of the Weisse Elster River (Germany). Ecological modelling, 211(1–2), 224–232. DOI:10.1016/j.ecolmodel.2007.09.009
[58] Houser, J. N., & Richardson, W. B. (2010). Nitrogen and phosphorus in the Upper Mississippi River: transport, processing, and effects on the river ecosystem. Hydrobiologia, 640(1), 71–88. DOI:10.1007/s10750-009-0067-4
[59] Bu, H., Tan, X., Li, S., & Zhang, Q. (2010). Water quality assessment of the Jinshui River (China) using multivariate statistical techniques. Environmental earth sciences, 60, 1631–1639. https://doi.org/10.1007/s12665-009-0297-9
[60] Lu, R. S., & Lo, S. L. (2002). Diagnosing reservoir water quality using self-organizing maps and fuzzy theory. Water research, 36(9), 2265–2274. DOI:10.1016/S0043-1354(01)00449-3
[61] Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water research, 34(3), 807–816. DOI:10.1016/S0043-1354(99)00225-0
[62] Holloway, J. M., Dahlgren, R. A., Hansen, B., & Casey, W. H. (1998). Contribution of bedrock nitrogen to high nitrate concentrations in stream water. Nature, 395(6704), 785–788. DOI:10.1038/27410
[63] Khanna, N. (2000). Measuring environmental quality: an index of pollution. Ecological economics, 35(2), 191–202. DOI:10.1016/S0921-8009(00)00197-X
[64] Chen, H. W., Chang, N. Bin, & Shaw, D. (2005). Valuation of in-stream water quality improvement via fuzzy contingent valuation method. Stochastic environmental research and risk assessment, 19(2), 158–171. DOI:10.1007/s00477-004-0223-3
[65] Cheng, J. L., Zhou, S. H. I., & Zhu, Y. W. (2007). Assessment and mapping of environmental quality in agricultural soils of Zhejiang Province, China. Journal of environmental sciences, 19(1), 50–54. DOI:10.1016/S1001-0742(07)60008-4
[66] Phung, D., Huang, C., Rutherford, S., Dwirahmadi, F., Chu, C., Wang, X., … & Dinh, T. A. D. (2015). Temporal and spatial assessment of river surface water quality using multivariate statistical techniques: a study in Can Tho City, a Mekong Delta area, Vietnam. Environmental monitoring and assessment, 187(5), 1–13. DOI:10.1007/s10661-015-4474-x
[67] Dalal, S. G., Shirodkar, P. V., Jagtap, T. G., Naik, B. G., & Rao, G. S. (2010). Evaluation of significant sources influencing the variation of water quality of Kandla creek, Gulf of Katchchh, using PCA. Environmental monitoring and assessment, 163(1–4), 49–56. DOI:10.1007/s10661-009-0815-y