Weighted Intuitionistic Fuzzy Distance Metrics in Solving Cases of Pattern Recognition and Disease Diagnosis

Authors

  • Michael Abah Onoja Department of Mathematics, Joseph Sarwuan Tarka University, Makurdi, Nigeria.
  • Manasseh Terna Anum Department of Mathematics, Joseph Sarwuan Tarka University, Makurdi, Nigeria.
  • Paul Augustine Ejegwa Department of Mathematics, Joseph Sarwuan Tarka University, Makurdi, Nigeria.
  • Kenneth Ifeanyi Isife Department of Mathematics, Joseph Sarwuan Tarka University, Makurdi, Nigeria.

Keywords:

Pattern recognition‎, Distance functions, Intuitionistic fuzzy sets‎, Weighted distance measure‎, Disease diagnosis‎

Abstract

Many complex real-life decision-making problems have been discussed using intuitionistic fuzzy distance measures. Sundry intuitionistic fuzzy distance measuring techniques have been developed. Ejegwa et al. developed some intuitionistic fuzzy distance measures, including the three intuitionistic fuzzy parameters: membership grade, Non-Membership (NM) grade, and hesitation grade. Albeit, Ejegwa et al.'s techniques did not consider the weights of the elements of the underlying sets upon which the intuitionistic fuzzy sets are defined. This omission could certainly affect the distance outputs. As a sequel to this setback, we develop a weighted intuitionistic fuzzy distance measure, where the weights are computed from the intuitionistic fuzzy values to enhance reliable results. In addition, the new weighted intuitionistic fuzzy distance measure is applied to discuss a pattern recognition problem to ascertain the patterns associated more closely with an unknown pattern. In addition, the new weighted intuitionistic fuzzy distance measure is applied to medical diagnosis to ascertain a patient's medical problem given certain symptoms. Finally, the superiority of the newly developed weighted intuitionistic fuzzy distance measure is shown comparatively concerning the existing intuitionistic fuzzy distance measures.

References

‎[1] ‎ Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353. https://doi.org/10.1016/S0019-‎‎9958(65)90241-X

‎[2] ‎ Atanassov, K. T., & Atanassov, K. T. (1999). Intuitionistic fuzzy sets. Springer. ‎https://link.springer.com/content/pdf/10.1007/978-3-7908-1870-3_1.pdf‎

‎[3] ‎ Burillo, P., & Bustince, H. (1996). Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. ‎Fuzzy sets and systems, 78(3), 305–316. https://doi.org/10.1016/0165-0114(96)84611-2‎

‎[4] ‎ Szmidt, E., & Kacprzyk, J. (2000). Distances between intuitionistic fuzzy sets. Fuzzy sets and systems, ‎‎114(3), 505–518. https://doi.org/10.1016/S0165-0114(98)00244-9‎

‎[5] ‎ Chen, S. M. (1995). Measures of similarity between vague sets. Fuzzy sets and systems, 74(2), 217–223. ‎https://doi.org/10.1016/0165-0114(94)00339-9‎

‎[6] ‎ Yang, Y., & Chiclana, F. (2012). Consistency of 2D and 3D distances of intuitionistic fuzzy sets. Expert ‎systems with applications, 39(10), 8665–8670. https://doi.org/10.1016/j.eswa.2012.01.199‎

‎[7] ‎ Ejegwa, P. A., Onyeke, I. C., Terhemen, B. T., Onoja, M. P., Ogiji, A., & Opeh, C. U. (2022). Modified ‎szmidt and kacprzyk’s intuitionistic fuzzy distances and their applications in decision-making. Journal ‎of the nigerian society of physical sciences, 4(2), 174–182. ‎https://journal.nsps.org.ng/index.php/jnsps/article/view/530‎

‎[8] ‎ Zhou, Y., Ejegwa, P. A., & Johnny, S. E. (2023). Generalized similarity operator for intuitionistic fuzzy ‎sets and its applications based on recognition principle and multiple criteria decision making ‎technique. International journal of computational intelligence systems, 16(1), 85. DOI:10.1007/s44196-023-‎‎00245-2‎

‎[9] ‎ Xu, Z., & Yager, R. R. (2006). Some geometric aggregation operators based on intuitionistic fuzzy sets. ‎International journal of general systems, 35(4), 417–433. DOI:10.1080/03081070600574353‎

‎[10] ‎ Xu, Z., & Yager, R. R. (2009). Intuitionistic and interval-valued intutionistic fuzzy preference relations ‎and their measures of similarity for the evaluation of agreement within a group. Fuzzy optimization and ‎decision making, 8, 123–139. https://link.springer.com/article/10.1007/s10700-009-9056-3‎

‎[11] ‎ Ejegwa, P. A., Akubo, A. J., & Joshua, O. M. (2014). Intuitionistic fuzzy set and its application in career ‎determination via normalized euclidean distance method. European scientific journal, 10(15), 1857–7881. ‎https://core.ac.uk/download/pdf/328024322.pdf

‎[12] ‎ Garg, H. (2016). Generalized intuitionistic fuzzy interactive geometric interaction operators using ‎Einstein t-norm and t-conorm and their application to decision making. Computers & industrial ‎engineering, 101, 53–69. https://doi.org/10.1016/j.cie.2016.08.017‎

‎[13] ‎ Garg, H. (2016). A new generalized improved score function of interval-valued intuitionistic fuzzy ‎sets and applications in expert systems. Applied soft computing, 38, 988–999. ‎https://doi.org/10.1016/j.asoc.2015.10.040‎

‎[14] ‎ Garg, H. (2017). Novel intuitionistic fuzzy decision making method based on an improved operation ‎laws and its application. Engineering applications of artificial intelligence, 60, 164–174. ‎https://doi.org/10.1016/j.engappai.2017.02.008‎

‎[15] ‎ Das, S., Kar, S., & Pal, T. (2017). Robust decision making using intuitionistic fuzzy numbers. Granular ‎computing, 2, 41–54. https://link.springer.com/article/10.1007/s41066-016-0024-3‎

‎[16] ‎ Liu, P., & Chen, S.-M. (2016). Group decision making based on Heronian aggregation operators of ‎intuitionistic fuzzy numbers. IEEE transactions on cybernetics, 47(9), 2514–2530. ‎https://ieeexplore.ieee.org/abstract/document/7786791/‎

‎[17] ‎ Garg, H., & Kumar, K. (2018). A novel correlation coefficient of intuitionistic fuzzysets based on the ‎connection number of set pair analysis and its application. Scientia iranica, 25(4), 2373–2388. ‎https://scientiairanica.sharif.edu/article_4454_c5b19f1ec5c2826fda26dbc02bab5382.pdf

‎[18] ‎ Nguyen, H. (2016). A novel similarity/dissimilarity measure for intuitionistic fuzzy sets and its ‎application in pattern recognition. Expert systems with applications, 45, 97–107. ‎https://doi.org/10.1016/j.eswa.2015.09.045‎

‎[19] ‎ Seikh, M. R., & Mandal, U. (2021). Intuitionistic fuzzy Dombi aggregation operators and their ‎application to multiple attribute decision-making. Granular computing, 6, 473–488. ‎https://link.springer.com/article/10.1007/s41066-019-00209-y

‎[20] ‎ Xuan Thao, N. (2018). A new correlation coefficient of the intuitionistic fuzzy sets and its application. ‎Journal of intelligent & fuzzy systems, 35(2), 1959–1968. https://content.iospress.com/articles/journal-of-‎intelligent-and-fuzzy-systems/ifs171589‎

‎[21] ‎ Jin, F., Pei, L., Liu, J., Zhou, L., & Chen, H. (2020). Decision-making model with fuzzy preference ‎relations based on consistency local adjustment strategy and DEA. Neural computing and applications, 32, ‎‎11607–11620. https://link.springer.com/article/10.1007/s00521-019-04648-1‎

‎[22] ‎ Ejegwa, P. A., & Onyeke, I. C. (2021). Intuitionistic fuzzy statistical correlation algorithm with ‎applications to multicriteria-based decision-making processes. International journal of intelligent systems, ‎‎36(3), 1386–1407. https://doi.org/10.1002/int.22347‎

‎[23] ‎ Ejegwa, P. A., & Onyeke, I. C. (2022). A novel intuitionistic fuzzy correlation algorithm and its ‎applications in pattern recognition and student admission process. International journal of fuzzy system ‎applications, 11(1), 1–20. DOI:10.4018/IJFSA.285984‎

‎[24] ‎ Gerstenkorn, T., & Mańko, J. (1991). Correlation of intuitionistic fuzzy sets. Fuzzy sets and systems, ‎‎44(1), 39–43. https://doi.org/10.1016/0165-0114(91)90031-K

‎[25] ‎ Hong, D. H., & Hwang, S. Y. (1995). Correlation of intuitionistic fuzzy sets in probability spaces. Fuzzy ‎sets and systems, 75(1), 77–81. https://doi.org/10.1016/0165-0114(94)00330-A

‎[26] ‎ Liu, B., Shen, Y., Mu, L., Chen, X., & Chen, L. (2016). A new correlation measure of the intuitionistic ‎fuzzy sets. Journal of intelligent & fuzzy systems, 30(2), 1019–1028. ‎https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs1824‎

‎[27] ‎ Boran, F. E., & Akay, D. (2014). A biparametric similarity measure on intuitionistic fuzzy sets with ‎applications to pattern recognition. Information sciences, 255, 45–57. DOI:10.1016/j.ins.2013.08.013‎

‎[28] ‎ Davvaz, B., & Hassani Sadrabadi, E. (2016). An application of intuitionistic fuzzy sets in medicine. ‎International journal of biomathematics, 9(3), 1650037. DOI:10.1142/S1793524516500376‎

‎[29] ‎ Wang, W., Zhan, J., & Mi, J. (2022). A three-way decision approach with probabilistic dominance ‎relations under intuitionistic fuzzy information. Information sciences, 582, 114–145. ‎DOI:10.1016/j.ins.2021.09.018‎

‎[30] ‎ Hong, D. H., & Kim, C. (1999). A note on similarity measures between vague sets and between ‎elements. Information sciences, 115(1–4), 83–96. https://doi.org/10.1016/S0020-0255(98)10083-X

‎[31] ‎ Mitchell, H. B. (2003). On the Dengfeng--Chuntian similarity measure and its application to pattern ‎recognition. Pattern recognition letters, 24(16), 3101–3104. https://doi.org/10.1016/S0167-8655(03)00169-7‎

‎[32] ‎ Liang, Z., & Shi, P. (2003). Similarity measures on intuitionistic fuzzy sets. Pattern recognition letters, ‎‎24(15), 2687–2693. https://doi.org/10.1016/S0167-8655(03)00111-9‎

‎[33] ‎ Hung, W. L., & Yang, M.-S. (2004). Similarity measures of intuitionistic fuzzy sets based on Hausdorff ‎distance. Pattern recognition letters, 25(14), 1603–1611. https://doi.org/10.1016/j.patrec.2004.06.006‎

‎[34] ‎ Grzegorzewski, P. (2004). Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets ‎based on the Hausdorff metric. Fuzzy sets and systems, 148(2), 319–328. ‎https://doi.org/10.1016/j.fss.2003.08.005‎

‎[35] ‎ Wang, W., & Xin, X. (2005). Distance measure between intuitionistic fuzzy sets. Pattern recognition ‎letters, 26(13), 2063–2069. https://www.sciencedirect.com/science/article/pii/S0167865505000784‎

‎[36] ‎ Ye, J. (2011). Cosine similarity measures for intuitionistic fuzzy sets and their applications. ‎Mathematical and computer modelling, 53(1–2), 91–97. https://doi.org/10.1016/j.mcm.2010.07.022‎

‎[37] ‎ Hung, W. L., & Yang, M.-S. (2007). Similarity measures of intuitionistic fuzzy sets based on Lp metric. ‎International journal of approximate reasoning, 46(1), 120–136. https://doi.org/10.1016/j.ijar.2006.10.002‎

‎[38] ‎ Chen, S. M., & Chang, C.-H. (2015). A novel similarity measure between Atanassov’s intuitionistic ‎fuzzy sets based on transformation techniques with applications to pattern recognition. Information ‎sciences, 291, 96–114. https://doi.org/10.1016/j.ins.2014.07.033‎

‎[39] ‎ Ngan, R. T., Cuong, B. C., Ali, M., & others. (2018). H-max distance measure of intuitionistic fuzzy sets ‎in decision making. Applied soft computing, 69, 393–425. https://doi.org/10.1016/j.asoc.2018.04.036‎

‎[40] ‎ Luo, X., Li, W., & Zhao, W. (2018). Intuitive distance for intuitionistic fuzzy sets with applications in ‎pattern recognition. Applied intelligence, 48(9), 2792–2808. ‎https://link.springer.com/article/10.1007/s10489-017-1091-0‎

‎[41] ‎ Xiao, F. (2019). A distance measure for intuitionistic fuzzy sets and its application to pattern ‎classification problems. IEEE transactions on systems, man, and cybernetics: systems, 51(6), 3980–3992. ‎https://doi.org/10.1109/TSMC.2019.2958635‎

‎[42] ‎ Rani, V., & Kumar, S. (2023). Dissimilarity measure between intuitionistic Fuzzy sets and its ‎applications in pattern recognition and clustering analysis. Journal of applied mathematics, statistics and ‎informatics, 19(1), 61–77. https://doi.org/10.2478/jamsi-2023-0004‎

‎[43] ‎ Ejegwa, P. A., Kausar, N., Agba, J. A., Ugwuh, F., Ozbilge, E., & Ozbilge, E. (2024). Determination of ‎medical emergency via new intuitionistic fuzzy correlation measures based on Spearman’s correlation ‎coefficient. AIMS mathematics, 9(6), 15639–15670. http://www.aimspress.com/journal/Math

‎[44] ‎ Ejegwa, P. A., Anum, M. T., & Isife, K. I. (2024). A new method of distance measure between ‎intuitionistic fuzzy sets and its application in admission procedure. Journal of uncertain systems, ‎‎2440005. https://doi.org/10.1142/S1752890924400051‎

‎[45] ‎ Li, R., Ejegwa, P. A., Li, K., Agaji, I., Feng, Y., & Onyeke, I. C. (2024). A new similarity function for ‎Pythagorean fuzzy sets with application in football analysis. AIMS math, 9, 4990–5014. ‎https://www.aimspress.com/aimspress-data/math/2024/2/PDF/math-09-02-242.pdf‎

‎[46] ‎ Wu, K., Ejegwa, P. A., Feng, Y., Onyeke, I. C., Johnny, S. E., & Ahemen, S. (2022). Some enhanced ‎distance measuring approaches based on Pythagorean fuzzy information with applications in decision ‎making. Symmetry, 14(12), 2669. https://doi.org/10.3390/sym14122669‎

‎[47] ‎ Anum, M. T., Zhang, H., Ejegwa, P. A., & Feng, Y. (2024, March). Tendency coefficient-based weighted ‎distance measure for intuitionistic fuzzy sets with applications. 2024 12th international conference on ‎intelligent control and information processing (ICICIP) (pp. 54-61). IEEE. ‎https://ieeexplore.ieee.org/abstract/document/10477789‎

Published

2024-09-03

How to Cite

Weighted Intuitionistic Fuzzy Distance Metrics in Solving Cases of Pattern Recognition and Disease Diagnosis. (2024). Risk Assessment and Management Decisions, 1(1), 88-101. https://ramd.reapress.com/journal/article/view/35